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LETTER TO THE EDITOR 

Quantum measurement as dissipation in chaotic atomic systems 

Sarben Sarkar and J S Satchel1 
Centre for Theoretical Studies, Royal Signals and Radar Establishment, Great Malvern, 
Worcestershire WR14 3PS, UK 

Received 1 December 1986 

Abstract. It is argued through examples that for quantum non-linear Hamiltonians for 
atomic systems the main effect of measurement is the introduction of dissipation. In the 
dissipative case quantum measurements can be performed which lead to no disturbance 
of the system. 

There has been much recent interest in chaotic and aperiodic behaviour in quantum 
systems [l]. Questions on the role of measurement and back reaction on the system 
being measured in such systems [ 2 ]  have occasionally been raised. However, the 
analysis of quantum measurement, which has had a resurgence of interest, has often 
concentrated on epistemological questions. These issues have been discussed in the 
context of simple linear systems. We will, however, take a pragmatic point of view 
here and show some effects of measurement, which we believe are fairly general, on 
a large class of quantum mechanical systems (including non-linear chaotic ones). 
Quantum mechanical systems liable to experimental test are usually atomic, and so 
we shall restrict our attention in this letter to such systems. Moreover these systems 
can be non-dissipative or dissipative. If p is the density matrix of the system then the 
dynamics has the form 

where H is the Hamiltonian for the system and A is a Liouvillian operator which is 
non-zero when there is dissipation. In many theoretical analyses of chaos the atomic 
systems are taken to have two states. We will, consequently, also for the measurement 
situation, consider a two-state atom A interacting with an arbitrary system S through 
some general Hamiltonian H. For the time being A will be taken to be zero. Before 
proceeding it will be convenient to introduce the irreducible tensor basis [3] for density 
matrix elements p', 

where 

T:,;Q = ( - 1 ) J " - m "  (J ' ,  J", m' ,  -m"(  J, m)lJ'm', a)(J"m", PI. 
m',m" 
J ' , J "  

Here in the ket IJ', m' ,  a ) ,  ( J ' ,  m ' )  describes the angular momentum quantum numbers 
for A, and a the remaining quantum numbers to define the state of S. Moreover, 
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( J ' ,  J", m', -m"lJ,  m )  is the Clebsch-Gordan coefficient associated with the addition 
of angular momenta J' and J".  

In measurement theory it is customary to have a meter coupled to the system being 
measured. For an atomic system it is natural and convenient to have, as part of a 
meter, other levels of the atom which do not participate in the dynamics of the 'AS' 
system; there are no strictly two-level atoms. We will consider the 'meter' levels, M ,  
of the atom to be also two in number. It is necessary to generalise (2) to 

p = (p$'p(AS)TE,f(AS)+pgp(M)T',',$"(M)+pgp(AS, M)T$,F(AS, M)) (3) 
0 

where 

Tg,F(AS) = (-l)"'-"'(J', J", m', - m " / J ,  m)lJ', m', a, AS)(J", m", p, AS1 
m',"' 

TK,F(AS, M) = (-1)'"-""(J', J", m', -m"lJ, m)lJ', m', a, AS)(J", m", p, MI 
m ' , m "  

etc. 
The labels M or AS on the bras and kets denote the angular momentum states 

corresponding to the 'meter' levels or the 'A' levels. We are, of course, interested in 
J ' = J " = i .  It is then possible to show that, if we couple AS to M by a laser field, 
which to a good approximation can be taken as classical, the density matrix elements 
satisfy (for a closely related analysis, see [4]) 

&(AS) = yp:( M) - iep i (AS) + ie*p; (AS) (4a)  

b:( M) = -P:(AS) (4b) 

1 
&AS) = - f y p A ( M ) - ; [ H ,  p(AS)]A-iep;(AS, M)+ie*p;*(AS, M) 

(4c) 

i 
h 

P:(AS)= - + y p ; ( M ) - - [ H ,  p(AS)];+ie*(p:(AS, M)*-pA(AS, M ) * )  

(4d)  

1 
Pl l (AS)  = -fyp',(M)-h[H, p(AS)]L, +ie(  &AS, M) -pA(AS,  M ) )  

(4e) 

& M )  = - y p ; ( M )  -iep:(AS, M)+ie*pi*(AS, M)  (4f )  

P ; ( M )  = - y p ; ( M )  -ie*(p:*(AS, M)+pA*(AS, M)) (4g) 

P I l ( M ) = - y p 1 1 ( M ) - i e ( p : ( A S ,  M)+pA(AS, M)) (4h) 

P:(AS, M) = -y,p:(AS, M)-ie*(pl , (M)-p ' , (AS))  

d ( A S ,  M )  = -y,pA(AS, M ) - i e * ( p l I ( M ) + p ~ , ( A S ,  M ) )  

P:(AS, M )  = -y,p;(AS, M )  + ie*( p : ( M )  -&AS) - pA( M )  - pA(AS)) 

(4i) 

(4j) 

(4k) 

(41) PL,(AS, M )  = -y,pIl(AS, M). 
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For clarity we have suppressed the a, /3 quantum numbers of S. Moreover we have 
defined 

[ H ,  p(AS)I: =Tr([H, p(AS)ITg2*"(AS)). 

The quantity e is proportional to the Rabi frequency associated with the laser field. 
In order for the ' M '  levels and the laser field to act as a meter we need the timescales 
(1/ y, 1/ yL) associated with them to be much faster than the dynamics being probed 
(which is governed by H). In this way the dynamics being studied can be followed 
in fine detail. Such fast timescales allow an adiabatic elimination of the p ( M )  and 
p(AS, M )  matrix elements. We then obtain the equations 

21eI2 I 

YL h 
P:(AS)=-pL,(AS)--[H, p(AS)]: 

2M2 1 
Pil(AS) = --pL,(AS) - -[H,  p(AS)]L,. 

YL h 

Here p i ,  are coherences and pA is the population difference in the two states of A. 
One of the equations derivable from the adiabatic elimination conditions and used to 
obtain (5a ) - (5c )  is 

This polarisation is related to the absorption of the laser light, and thus a measurement 
of the absorption constitutes a measurement of &AS). From (Sa)-(5c) we see that 
the structure of the equations implies that the measurement causes dissipation. As a 
particularly simple example of this general result we can consider recent work [ 5 ]  on 
chaotic 'Rabi' oscillations. In that work, for a system with the Hamiltonian 

in the absence of measurement, pA( t )  was found to have irregular and aperiodic time 
evolution when the wL( t )  time dependence was governed by two incommensurate 
frequencies which were also incommensurate with wll. In figure 2 we see the damping 
effect of measurement on p& in contrast to the behaviour in  figure 1 where there is 
no measurement. (We define s = 21eI2/ yI .) Although this is a specific (but natural) 
example of measurement, it holds for a large class of systems and illustrates in a 
particularly simple way that dissipation should be a primary effect of measurement, 
even in chaotic situations. 

There are, of course, systems for which dissipation is an intrinsic part of the chaos 
[6] that is found. We may wonder whether the effect of measurement is just to add 
more dissipation to the existing dissipation in the system. The dissipative master 
equations, such as ( l) ,  are derived from a system evolving through a Hamiltonian H 
and also interacting with a heat bath. The standard Hamiltonian for the bath and the 
interaction of the bath and system is given by 

dw u a + ( w ) a ( w ) + -  ihy"2 dw(a'(w)cr-cT'a(w)) 
Js;; 
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Figure 1. Driven two-state population difference with no measurement. 
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Figure 2. Driven two-state population difference with measurement ( s  = 0.1). 

where a ( w ) ,  a+( w )  are harmonic oscillator annihilation and creation operators 
satisfying 

[ U ( @ ) ,  a’(”) ]  = S ( w  - w ’ )  

and a is a system operator. The master equation can easily be shown to be equivalent 
to the set of quantum Langevin equations [7] for arbitary system operators U’.  For t > to 

b’= --[a’, N I - ( [ a ’ ,  a‘ ] (4ya+ y ‘ 1 2 a i ” ( t ) ) - ( ~ y U + +  y”%:n(t))[a’,  U ] )  (8) 
i 
h 
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where 

ain( t )  = - d o  exp[-io(t- t o ) ] a o ( w )  

and a o ( w )  is a ( o ) l r = b .  In an analogous way for t < t l  it can be shown that 

i 
h ci‘= --[a’, H I - ( [ a ’ ,  a+](-fy7+ y ’ ~ 2 a o u t ( t ) ) - ( - - f y a + + y ’ ~ 2 a ~ u t ~ t ) ) [ a ‘ ,  a]) ( 9 )  

where 

aoud 1 )  = 0’/2 d o  exp[-io(t- t l ) ] a l ( w ) .  

It follows from (8) and (9) that 

In this way, by monitoring the output into the bath we get a direct measurement of 
the system variable a(t) .  For atomic systems the a ( w )  is the annihilation operator for 
free space photons of frequency W .  Hence by a simple reinterpretation of the Langevin 
equations for a quantum dissipative system we see directly that the dissipation present 
leads to a measurement of the system. No further dissipation mechanisms need be 
introduced. 

In conclusion we find that quantum measurements can be performed on chaotic 
dissipative systems without affecting the system. For chaotic Hamiltonian systems, 
dissipation is introduced by the measurement. 
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